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sected cation for primary cyclopropylcarbinyl systems. In 
this communication we present stereochemical evidence 
which bears on this important structural question. 

Methanesulfonate 5 was prepared from optically active 
//•a/u-2-methylcyclopropanecarboxylic acid by the se­
quence of reactions shown in Scheme I. Assuming that 
yeast alcohol dehydrogenase reduction of aldehyde 3 is ste-
reospecific,6 the alcohol7 used to prepare 5 was a mixture of 
diastereomers—77% 15, VR, 2'R and 23% IS, VS, 2'S. 

Hydrolysis of 5 (77% IS, VR, 2'R) in 60% acetone-
water with 2 equiv of 7-collidine, k25° = (8.2 ± 0.2) X 
1O -2 sec - 1 , gave three major products;8 4 (26%), 6 (56%), 
and 7 (18%). The 2H distribution in each alcohol was de­
duced by measuring 1H nmr intensities for samples where 
the chemical shifts of protons H1-H4 were separated as far 
as possible using Eu(fod)3. Chemical shift assignments9 for 
4 (0.235 mmol of Eu(fod)3/0.413 mmol),10 6 (0.076 mmol 
of Eu(fod)3/0.384 mmol),1 ' and 7(0.118 mmol of Eu(fod)3/ 
0.257 mmol)12 are summarized below. Although alcohols 4, 

(3.60) (5.78) 
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The (trans -2'-MethylcycIopropyl)methyl System. 
Stereochemistry of Ionization, Rearrangement, and 
Solvent Capture1 

Sir: 

Acceptance of bisected structures for cyclopropylcarbinyl 
cations is based on a growing body of experimental2 and 
theoretical work.2-3 However, except for molecular orbital 
calculations,3 all of the available evidence which strongly 
supports bisected cations was obtained with secondary and 
tertiary systems.2 Recently Olah and coworkers4 challenged 
the concept that the parent cation (a primary system) is bi­
sected and have proposed an unsymmetrically bridged 
structure on the basis of 13C chemical shift comparisons. 
Subsequently the use of 13C chemical shifts to decide be­
tween bisected and bridged structures was questioned,5 but 
there were still no direct experimental data to support a bi-

6, and 7 are each inseparable mixtures of four 2H isomers, 
the mole fractions of 2H isomers for each skeletal isomer 
(2H at positions Hj -H 4 ) correspond directly to the 2H in­
tensities listed in Table I. 

An abbreviated mechanism is presented in Scheme II to 
account for the observed 2 H distribution. Using the data in 
Table I,13 the stereochemistries of five individual steps— 
ionization of 5, reaction of 8 with solvent at C], rearrange­
ment of 8 to its enantiomer and to 9, and reaction of 9 with 
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Scheme II 

solvent at Cj—can be deduced.14 Our results are summa­
rized by following the reactions initiated by ionization of 
mesylate 5 from conformer 5a. Ionization is stereoselective 
with 74 ± 5% of the mesylate ionizing from conformer 5a 
and the remainder from 5b. Nucleophilic attack by water at 
Ci of cation 8(1) is also stereoselective, with 72 ± 7% going 
to 4(1) and the remainder to 4(2).16 Cyclopropylcarbinyl-
cyclopropylcarbinyl rearrangements 8(1) -* 8(3) and 8(1) 
-* 9(1) are stereoselective, 94 ± 8 and 84 ± 18%, respec­
tively.17 The reaction of bisected cation 9(1) with water at 
Ci produces equal amounts of 7(1) and 7(3), as expected.18 

Complementary stereo- and regiochemical behavior was 
found for reactions initiated by ionization of 5 from confor­
mer 5b. 

Replacing a hydrogen at C2' by a methyl group enhances 
the solvolytic rate of 5 by 14.4 relative to the parent mesyl­

ate.19 By dissecting the rate enhancement for 5 into individ­
ual enhancements for conformers 5a (10.9) and 5b (3.5), it 
is obvious that both transition states are stabilized by the 
methyl group. The difference in rates is only a factor of 3.1, 
and could be attributed to electronic (slight preference for 
ionization from conformer 5a6a) or steric factors (slight 
buttressing which favors conformer 5a). Obviously the elec­
tronic effect of an alkyl substituent at C2' with regard to in­
fluencing the stereochemistry at Ci during ionization or 
reaction with solvent is small and had been previously over­
estimated because of conformational and steric complica­
tions.20 The lack of stereospecificity in some cyclopropyl-
carbinyl systems21 is now easily understandable. 

Finally, our data provide strong evidence for bisected cy-
clopropylcarbinyl cations as intermediates during solvolysis 
of primary systems. Sizeable rate enhancements for both 
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Table I. Relative 1H and 2H Intensities in 2-OH, 4-OH, and 5-OH 

Compound Hi H2 H3 H4 

4 (before hydrolysis) 1H" 0.23 0.77 

4 (after hydrolysis) 

H6 

!H» 
H» 
H6 

Hc 

H° 
H6 

H= 
H" 

!H i , 
2H= 

0.77 
1.00 
0.60 
0.40 
0.43 
0.53 
0.48 
0.57 
0.68 
0.32 
0.37 

0.23 

0.67 
0.33 
0.30 
0.76 
0.24 
0.15 
0.82 
0.18 
0.13 

0.84d 0.89 
0.16 0.11 
0.18 0.09 

1.71« 
0.28 
0.28 

0.68 0.82 
0.32 0.18 
0.37 0.13 

" All 1H integrated intensities were obtained on a Varian XL-100-
15 nmr spectrometer with an external 19F lock. Each value repre­
sents the average of 20 integrations and was calculated on the basis 
24„_i#„ = 3. Average deviations <0.01. l 2H = 1 - 1H. "Cor­
rected for 23 % of the IS, 1 '5, 2'S diastereomer in starting mesylate. 
d Overlaps signal for H5, total intensity at 1.84. ' Not sufficiently 
separated to integrate individually. 

conformer's of 5 by the C2 ' methyl group suggest interaction 
of the developing p orbital at Ci with both adjacent cyclo­
propane bonds. In contrast, an unsymmetrically bridged bi­
cyclobutonium structure22 implies interaction between Ci 
and only one of the two adjacent cyclopropane bonds. One 
might have expected the methyl at C2 ' to be more stabiliz­
ing than a factor of 3.1 for formation of 10 vs. I I . 2 4 How-

CH, CH, 

10 
ever, more compelling evidence for a bisected primary cy-
clopropylcarbinyl cation comes from comparisons of isoto-
pic distributions in alcohols 4, 6, and 7. Alcohol 4(1) com­
prises 71% of 4(1) + 4(3) and 4(2)1 5 comprises 77% of 4(2) 
+ 4(4). In addition 4(1) + 4(2), 6(1) + 6(2), and 7(1) + 
7(2) constitute 73, 72, and 74%, respectively, of alcohols 4, 
6, and 7. These similarities indicate that the distributions of 
2H isomers in each skeletal isomer only differ by a factor 
representative of the proportion of 5 which ionizes from 
each conformer. Bisected cations 8(1) and 8(2) should have 
nearly identical stereo- and regiochemistries for reaction 
with solvent and rearrangement in agreement with our find­
ings, whereas bicyclobutonium ions 10 and 11 should not. 

Supplementary Material Available. Reduction of the data will 
appear following these pages in the microfilm edition of this vol­
ume of the journal. Photocopies of the supplementary material 
from this paper only or microfiche (105 X 148 mm, 24X reduction, 
negatives) containing all of the supplementary material for the pa­
pers in this issue may be obtained from the Journals Department, 
American Chemical Society, 1155 16th St., N.W., Washington, 
D.C. 20036. Remit check or money order for $4.00 for photocopy 
or $2.00 for microfiche, referring to code number JACS-74-7591. 
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Structure of Hexameric Trimethylsilyllithium, a Folded 
Chair 

Sir: 

We wish to report the first crystal structure of. a hexam­
eric lithium derivative which provides a detailed picture of 
the lithium aggregate in (LiSiMe3)6 and also shows the 
participation of silicon in an electron deficient structured 
Two views of this structure are shown in Figure la and lb. 
It is found that the trimethylsilyllithium framework can 
best be represented as a chair-form six-membered lithium 
ring of approximate D ^ symmetry with each face occupied 
by a bridging trimethylsilyl group. This is in contrast to the 
distorted octahedron with two open faces previously postu­
lated for simple hexameric organolithium derivatives,1 and 
to the hydrogen-bridged structure proposed by Craubner.2 

The 12 shortest lithium-lithium distances fall into two 
classes of six distances each. The shorter of these two 
classes averages 2.70 A (av esd 0.03 A) and occurs between 
the lithium atoms adjacent to one another on the edge of 
the ring. This distance is close to twice the covalent radius 
(1.23 A) and is similar to the lithium-lithium bond distance 
(2.42-2.63 A) observed in the methyl-3 and ethyllithium 
tetramers4 and to that recently reported in the dimeric bicy-
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